

CATALYTIC TECHNOLOGIES DEVELOPMENT & IMPLEMENTATION

CATALYTIC TECHNOLOGIES DEVELOPMENT & IMPLEMENTATION

Dear Partners!

Welcome to the information catalog of Scientific Industrial Enterprise Neftehim! SIE Neftehim is the Russian engineering company. For over 60 years, we have been developing and implementing the petroleum refining technologies.

SIE Neftehim is one of the largest manufacturers of the isomerization and reforming catalysts in Russia. The total installed production capacity is up to 1,000 tons/year.

Our mission is widespread distribution of the modern effective catalysts and technologies to improve the motor gasoline quality.

We have implemented more than 80 projects, including projects in Russia, Europe, China, India, and other countries.

SIE Neftehim has its own scientific and laboratory facilities, modern equipment, knowledge and expertise for constant enhancement of the catalysts quality and searching for the new effective solutions.

We are always open for cooperation!

Alexander Shakun President and CEO

Catalytic Technologies Development & Implementation

ACTIVITIES

- Catalyst supplies
 Licensing
 Basic Engineering Design
 Technical support
 at all implementation stages
- Isomerization of C4, C5-C6, C7 cuts Isomalk-2, Isomalk-3, Isomalk-4 technologies based on SI-catalysts
- Reforming CCR, SRR Reforming catalysts RC-catalysts, REF-catalysts

- Isoplat technology combines isomerization and reforming technologies
- **Xylene isomerization** based on IK-catalysts
- Hydrogen gas treatment based on MCat-catalysts
- Hydrogenation based on HCat-catalysts
- Hydrotreatment based on DS-catalysts

OPTIONS FOR WIDE NAPHTHA PROCESSING TO PRODUCE GASOLINE AS PER MODERN ENVIRONMENTAL STANDARDS

OPTIONS FOR WIDE NAPHTHA PROCESSING TO PRODUCE GASOLINE AS PER MODERN ENVIRONMENTAL STANDARDS

C₅-C₆ Cut Isomerization – Isomalk-2

ISOMALK-2 based on SI-2 catalyst

More than 15 years commercial operating experience

More than 1,000,000 hours total SI-2 catalyst commercial operation

More than 30 references Russia, USA, EU, China, India, Middle East countries

More than 50% of gasoline is produced in Russia based on Isomalk-2 technology

ISOMALK-2 benefits

no chlorine agents supply	-	reduced OPEX; no dry gas treatment section	
no aggressive reagents	-	low corrosivity of equipment, no wastes for recovery or disposal	up to
no deep drying of feed	-	no feed drying section with molecular sieves	93 RON
no deep purification of feed to remove sulfur and nitrogen	-	no hydrogenate adsorptive post-treatment section to remove sulfur and nitrogen traces	
process stability	-	guaranteed operating performances during the total catalyst service life	PIN 130+
high activity and selectivity	•	product yield 98 wt. % with up to 93 RON, minimal energy consumption	HIGH CATALYST STABILITY
no formation of low octane C7+ hydrocarbons comparing with the technologies based on chlorinated catalysts		higher octane number of total isocomponent comparing with the technologies based on chlorinated catalysts	TO CATALYTIC POISONS
deeper opening of naphthenic rings	•	lower OPEX due to recycle reduction	

nefthim.com

C₅-C₆ Cut Isomerization – Isomalk-2

Isomalk-2 isomerization unit "once-through"

Isomalk-2 options

	RON	Yield, %
"once-through"	81-84	99+
ISOM/DIH	87-88	98+
DIP/ISOM/DIH	89-90	98+
recycle of pentanes and hexanes	91-93	98+

Isomalk-2 isomerization unit basic process configuration with feed deisopentanization, recycle of pentanes and low-branched hexanes

Typical execution period of Isomalk-2 design is 2-3 years

		ly	ear			ll y	ear	
Виды работ	IQ	ΠQ	III Q	IV Q	IQ	II Q	III Q	IV Q
1. Basic Engineering Design								
2. Detailed Engineering Design								
3. Equipment ordering and supply								
4. Site preparation								
5. Construction								
6. Installation								
7. Pre-commissioning								

C₅-C₆ Cut Isomerization – Isomalk-2

SI-2 catalyst

Low-temperature non-chlorinated oxide catalyst SI-2

Much higher tolerance to water, sulfur, nitrogen, and other catalytic poisons comparing with chlorine-containing catalysts

Service life - more than 12 years Achieved catalyst service life - 14 years

Ability to regenerate - 8-10 regenerations without activity loss

Catalyst service cycle is more than 6 years provided that technology requirements are observed

Process upsets do not lead to irreversible activity loss

High isomerization activity and selectivity performances superior to those of chlorinated catalysts

Tolerance to fluctuations of feed rate

SI-2B catalyst

advanced modification of commercially proven SI-2 catalyst

It is created specifically for change-out in the units based on chlorinated catalytic systems.

Complete refusal of using chlorinating agents

Energy savings over 20%

Lower risks

Experience of isomerization unit conversion from chlorinated to SI-2 catalyst

More than 12 years expected service life of SI-2 catalyst

5 years current service life of SI-2 catalyst

Reduced energy costs

No corrosion and caustic wastes in the unit

Parameter	<mark>Isomalk-2</mark> SI-2/SI-2B (oxide)	Chlorinated catalyst technologies
Reactor section inlet temperature, °C	120 - 160	120 - 160
First reactor inlet pressure, MPa	2.5 - 3.5	3.2 - 3.6
Feed rate, hour ⁻¹	2.0 - 3.5	1.0 - 1.5
H2/HC molar ratio	1.5 - 2.5 : 1/0.07-0.30 : 1	0.07 - 0.25 : 1
Maximum RON of total isocomponent	up to 93	up to 92
Catalyst service life, years	more than 12	4-5
Ability to regenerate	yes	no
Feed adsorptive post-treatment to remove water, sulfur, and nitrogen impurities	no	yes
Chlorinating reagent supply	no	yes
Tolerance to breakthrough of catalytic poisons	recoverable activity	irreversible deactivation
Sensitivity to H2O impurities, ppm	up to 5	up to 0.05
Caustic treatment products, caustic wastes	no	yes
Risk of corrosion product	no	yes
Relative OPEX as compared with Isomalk-2	1.0	1.2

N-butane Isomerization - Isomalk-3

ISOMALK-3

Producing valuable feed for MTBE synthesis: > 99 wt. % purity isobutane

Eco-friendly technology no dangerous reagents

Robustness and simplicity significant reduction in isobutane production cost

Proved solutions

4 operating units, including one of the most high-capacity units in the world (Sinopec Jinling Petrochemical, 480 KTA)

ISOMALK-3 over SI-3 catalyst

no chlorine-containing reagent supply	-	no dry gas treatment section	purity
no aggressive r <u>eagents</u>		low corrosivity of equipment, no wastes that require disposal or landfilling	iC4H10 >99%
no deep purification of feed to remove sulfur and nitrogen	-	no hydrogenate adsorptive post-treatment section to remove sulfur and nitrogen traces	HIGH
process stability	-	guaranteed operating performances during the total catalyst service life	TO CATALYST STABILITY
catalyst with doubled service life		SI-3 catalyst service life is 8-10 years	ир то 20%
high robustness	-	stable catalyst activity even after process upsets	ENERGY SAVING

N-butane Isomerization - Isomalk-3

Parameter	<u>Isomalk-3</u> SI-3 cat.	Technologies over chlorinated catalysts
Adsorptive post-treatment stage	yes	yes
Process temperature, °C	160-210	160-210
Pressure, MPa	1.5-2.0	2.5-3.2
Feed rate, hour ¹	6.0-8.0	6.0-8.0
H2:butane molar ratio	0.07-0.15	0.07-0.15
"Once-through" conversion of n-butane,%	50-55	55-60
"Once-through" yield of C3+ hydrocarbons, wt.%	99	99
Total service life of the catalyst, years	8 - 10	2-4
Catalyst sensitivity to feed impurities	mild	high
Effect of moisture breakthrough on the catalyst	recoverable activity	complete deactivation
Ability to restore the catalyst activity	yes	no
Chlorine compounds supply	no	constant
Caustic treatment of acid gas	no	yes
Wastes requiring special handling	no	yes
Chlorine impurities in the product	no	yes

ISOMALK-3. Process configuration

ISOMALK-3. Implemented small-scale projects

N-butane Isomerization - Isomalk-3

ISOMALK-3. Large-scale projects

C7 Cut Isomerization – Isomalk-4

ISOMALK-4

Increase of motor gasolines production reduced aromatics

Environmentally friendly technology no hazardous chemicals

Technology reliability and simplicity no proprietary equipment

Promising technology no world analogues

ISOMALK-4 - promising technology for C7 cut isomerization

increase of isomerate share in IBP-180°C cut processing	-	production of additional amount of non-aromatic motor gasoline component with high octane number	
improvement of reformers operating performances	-	increased reformate yield; < 1.0% benzene in reformate	up to 85 RON
process stability and simplicity	\rightarrow	equipment implementation is common to Isomalk-2	
high activity and selectivity of the process	-	increase RON of C7 cut up to 85 RON with 95% yield	Yield up to 95%
Isomalk-4 technology is flexible and suitable for small- and large-scale	\rightarrow	applicable in a wide capacity range	HIGH
refineries			CATALYST STABILITY
possible implementation through revamp of existing capacities	\rightarrow	Iow CAPEX	

C₇ Cut Isomerization – Isomalk-4

90

ISOMALK-4 - basic process configuration with recycle of low-branched heptanes

Isoplat

ISOPLAT - efficient processing of 70-180°C cut

- Up-to-date development no world analogues
- Combination of isomerization and reforming technologies increased product yield, low aromatics
- CAPEX and OPEX optimization common compressor, cooler, separator, and stabilization column for isomerization and reforming processes
- Possible implementation in the existing reformers through revamp
- High-quality product

Isoplat

ISOPLAT basic process configuration

Reforming

Reforming CCR over RC-catalysts

Patented Technology commercial production up to 1,000 tons/year

Compatibility with most of commercial CCR catalysts

Three-party control of production process provides high quality of products **RC-catalyst**

highly active catalyst for aromatic component production

with maximum yield and RON

CCR unit conversion to RC-12 catalyst (Middle East)

nefthim.com

Reforming SRR

REF^{Ultra}, REF-125, REF-130 reforming catalysts for fixed-bed reformers

- Up to 99 RON reformate
- **Reformate yield is higher by 1 wt. %** at comparable operating conditions
- **Increased hydrogen yield** due to higher operational stability and selectivity

REF^{Ultra}, REF-125, REF-130 reforming catalysts for fixed-bed reformers

Catalysts

Catalysts

Catalyst production at proprietary commercial facility Nizhegorodskie catalysts, LLC factory (Nizhniy Novgorod, Russia) under the license of SIE Neftehim, LLC

Supplies and warranty service are provided by the Licensor - SIE Neftehim

Any quality deviation of the catalyst is eliminated parallel quality control of each produced batch in the laboratories of Nizhegorodskie catalysts and SIE Neftehim

24/7 pilot tests of each catalyst batch with the duration of more than 200 hours

Isomerization catalysts (SI-2, SI-3, SI-4) – pages 11, 16, 22 Reforming catalysts (RC-catalysts, REF-catalysts) – pages 27, 29

Catalysts

IK-112 xylene isomerization catalyst

High conversion performances in terms of ethylbenzene

Low losses of target C₈ aromatics

High activity operation at feed rate up to 6.0 h^{-1}

Increased stability

IK-112

highly active Pt-containing catalyst to produce ortho- and paraxylene

nefthim.com

SIE NEFTEHIM, LLC

Catalysts

DS-catalysts - naphtha hydrotreatment

New generation of catalysts

DS-20 (NiMo) DS-21 (CoMo) DS-120

high stability comparing with previous modifications Necessary feed pre-treatment for naphtha isomerization and reforming units

5 commercial units commercial experience

0.1-0.5 wt. ppm

residual content of sulfur and nitrogen in hydrogenate

280-320 °C operating temperature range

nefthim.com

Catalysts

MCat-catalysts CO and CO₂ methanation

HCat-catalysts benzene hydrogenation

catalyst MCat-17

high stability no need to regenerate service life > 10 years

Comprehensive hydrogenation of CO and CO₂

Catalyst activity is recoverable

Operation at low temperatures

catalyst HCat-18

high stability no need to regenerate service life > 10 years

Comprehensive hydrogenation of benzene benzene hydrogenation depth is much higher than that of conventional Pt-alumina hydrogenation catalysts

Increased tolerance to sulfur breakthrough in feed reliable protection of the main catalyst in isomerization units with pre-hydrogenation sections

Low operating temperature >90°C

Commercial production

Catalytic Technologies Development & Implementation

Services

- Licensing
- Basic Engineering
- Detailed Engineering
- Licensing support of Detailed Engineering and construction
- Equipment supply
- Catalyst production and supply
- Unit start-up and operation support

Catalytic Technologies Development & Implementation

Our competencies

24/7 development of new catalysts and technologies in proprietary research laboratory Krasnodar, Russia

Proprietary production facility with modern process equipment Nizhniy Novgorod, Russia

Constant three-stage production quality control only superior quality products

Individual customer-oriented approach

Basic Engineering is prepared in SIE Neftehim's head office; each project is adapted for a specific production and customized

Subcontractors work control

We work only with the skilled and job-proved subcontractors for preparation of engineering and design documentation

Technical support within the total licensed period

- constant compliance control of design and construction works in terms of technology requirements;
- our skilled professionals are involved in pre-commissioning works;
- customer personnel training for safe and effective unit operation;
- continuous monitoring, phone and e-mail consultations

350007,Russia, Krasnodar, Zakharov st., 4 +7 861 203-20-20 info@nefthim.ru

nefthim.com

A UNE

2020