
NEW PROJECTS BASED ON TECHNOLOGIES OF PJSC SIE NEFTEHIM FOR PRODUCTION OF HIGH-QUALITY MOTOR GASOLINES

A.S.

JSC SIE NEFTEHIM

Joint Stock Company Scientific Industrial Enterprise Neftehim

Alexander Shakun

General Director of PJSC SIE Neftehim

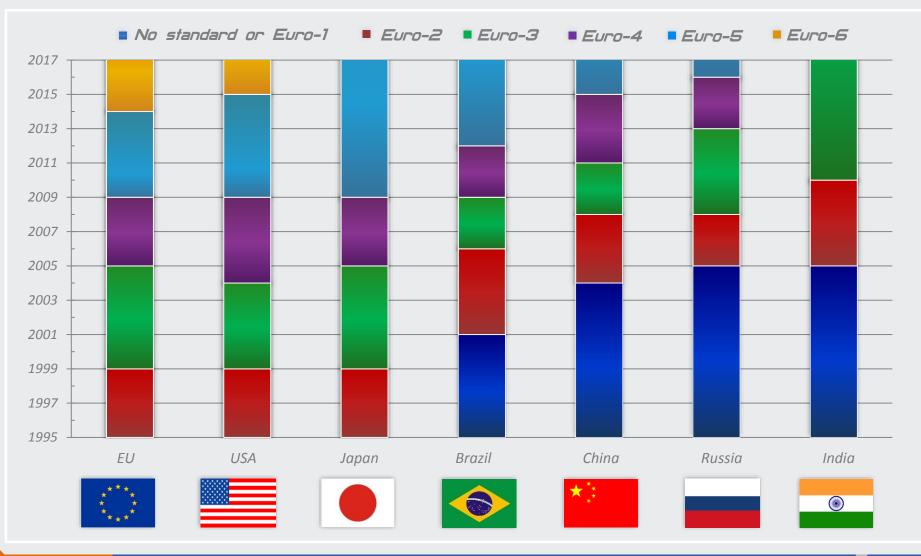
CURRENT TRENDS OF MOTOR GASOLINE PRODUCTION

Share of high-octane gasolines according to EURO-5 standards with content of <u>aromatic hydr</u>ocarbons < 35 vol. % and benzene < 1.0 vol. % is increased

New EURO-6 standards with content of aromatic hydrocarbons < 25 vol. % and benzene < 0.8 vol. % are appeared

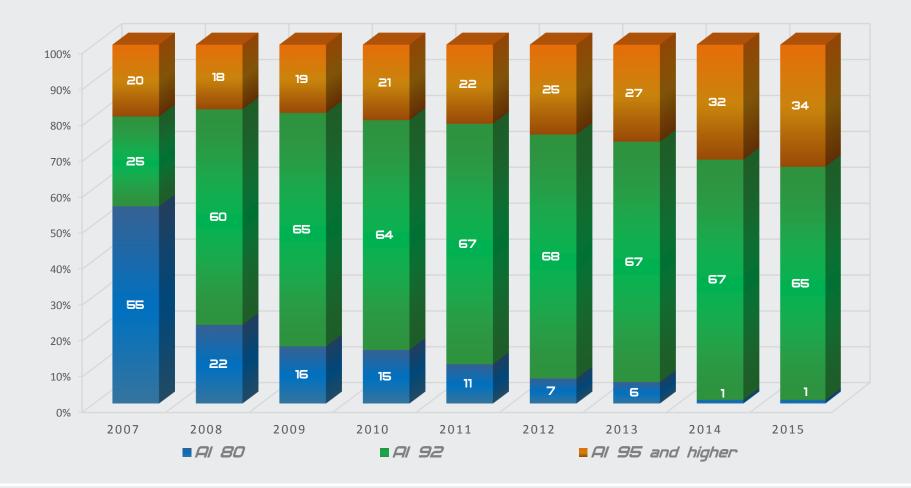
Demand of high-octane motor gasoline non-aromatic components (isomerates and alkylates) is enlarged

It is required to decrease share of reformates – high-octane aromatic concentrates

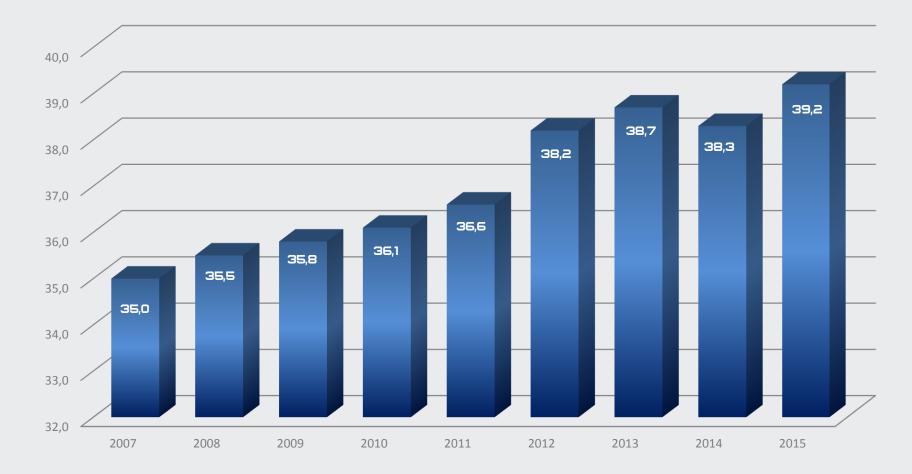

NEW HORIZONS OF MOTOR GASOLINE QUALITY

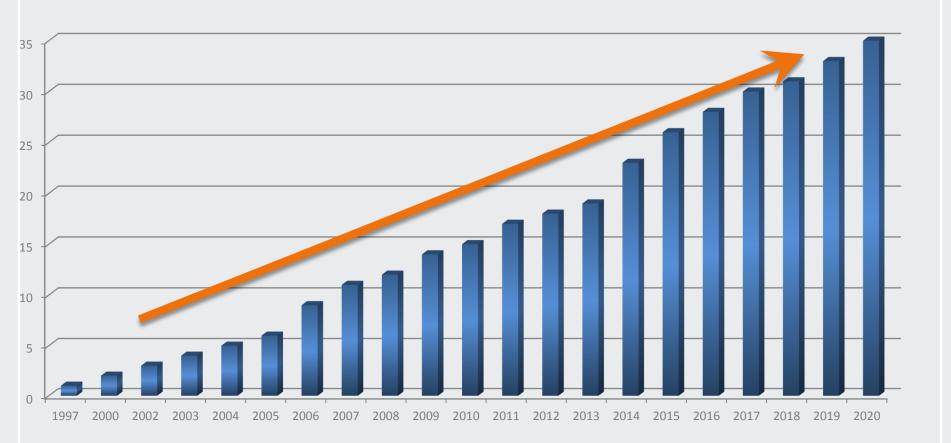
Performances	EURO-2	EURO-3	EURO-4	EURO-5	EURO-6*
Standard's date of validity in European Union	1995	1999	2005	2009	2015
Standard's date of validity in Russian Federation	2005	2008	2013	2016	-
Date of production termination in Russian Federation	till 01.01.2013	till 01.01.2015	till 01.01.2016	-	-
Benzene content, wt. %, no more than	5.0	1.0	1.0	1.0	0,8
Sulfur content, ppm, no more than	500	150	30	10	10
Aromatic hydrocarbons content, % vol., no more than	-	42	35	35	24
<i>Olefinic hydrocarbons content, % vol., no more than</i>	-	18	14	14	11
Oxygen content, % wt., no more than	-	2.7	2.7	2.7	2.7
Availability of detergent additives	-	Obligatory	Obligatory	Obligatory	Obligatory
NOx emissions, g/kW·h	8.0	5.0	3.5	2.0	0.4

* Performances of motor gasoline according to EURO-6 standard are not definitively established


EURO-STANDARDS' IMPLEMENTATION DATE

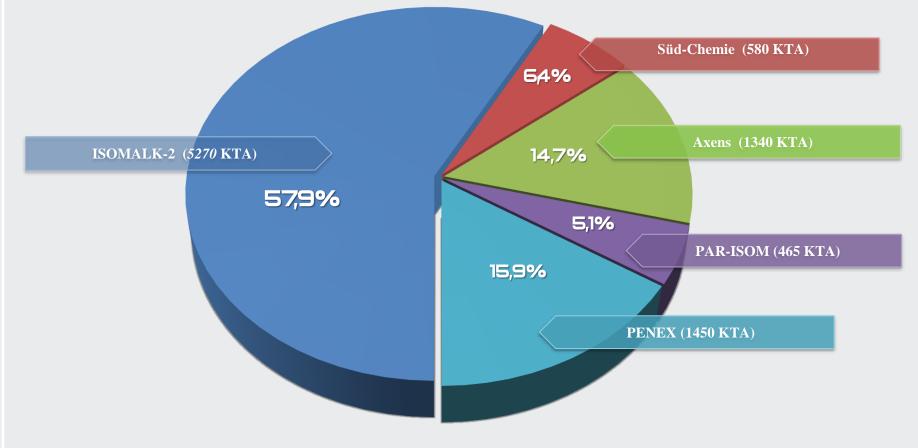
CHANGE OF MOTOR GASOLINE PRODUCTION STRUCTURE BY CLASSES IN RUSSIA OVER A PERIOD OF 2007-2015


MOTOR GASOLINE PRODUCTION STRUCTURE BY GRADES (RON) IN RUSSIA



DYNAMICS OF MOTOR GASOLINE PRODUCTION CHANGES IN RUSSIA

MOTOR GASOLINE PRODUCTION IN RUSSIA, MILLION OF TONNES


DYNAMICS OF C_s-C_6 ISOMERIZATION UNITS COMMISSIONING IN RUSSIA

SHARE OF DIFFERENT TECHNOLOGIES FOR PRODUCTION OF C_5-C_6 ISOMERATE IN RUSSIA

ISOMERIZATION

Isomerization is the main way to increase share of high-octane motor gasolines according to the standards EURO-5 and EURO-6

- Competitive capacity of isomerization over zeolite catalysts has been dropped sharply. There are two competitive low-temperature isomerization technologies in the world market: over highly-chlorinated alumina catalysts and over sulfated zirconia catalysts:
- Increasingly refiners give preference to zirconia isomerization catalysts as they are more reliable and more efficient in operation;
- > Zirconia catalysts field of application has been widened: from C_5-C_6 isomerization to C_4 and C_7 isomerization.

MAIN ADVANTAGES OF C_5-C_6 FRACTIONS ISOMERIZATION TECHNOLOGIES ISOMALK-2

- ✓ Isomerate with octane number up to 92-93 RON and yield of 98% is produced
- ✓ Catalyst cycle length of 10 years and service life up to 12 years have been confirmed in practice
- \checkmark Catalyst is stable to the microimpurities of catalytic poisons

13 isomerization units Isomalk-2 have been commissioned by 2015, share of these units in Russian Federation is more than 50%

- ✓ Kogalymneftegaz (Russia), 15 KTA (III Q 2016);
- ✓ BPCL (Mumbai, India), 620 KTA (IV Q 2016)
- \checkmark PJSC TATNEFT (Russia), 420 KTA (IV Q 2016)
- Lifengda (China), 80 KTA (I Q 2017)
- ✓ HaiLinh HaiPhong Petroleum (Vietnam), 500 KTA (2017)
- ✓ KINEF Ltd. (Russia), 500 KTA (2018)
- Hengli (China), 2400 KTA (2018)

PJSC TATNEFT, NIZHNEKAMSK, RUSSIA ISOMERIZATION UNIT ISOMALK-2

OPERATING PERFORMANCES OF THE UNIT:

"Once-through" isomerization process scheme with low-branched hexanes recycle

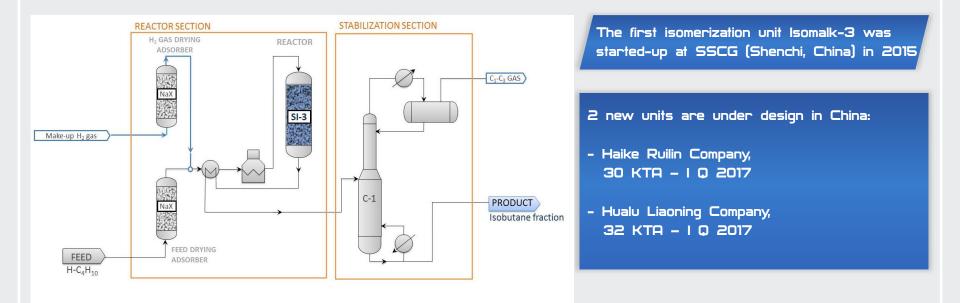
Feed capacity, t/year	420,000
Isomerate yield, %	≥98
RON	≥91.2

KOGALYMNEFTEGAZ REFINERY, KOGALYM, RUSSIA PACKAGED ISOMERIZATION UNIT ISOMALK-2

OPERATING PERFORMANCES OF THE UNIT:

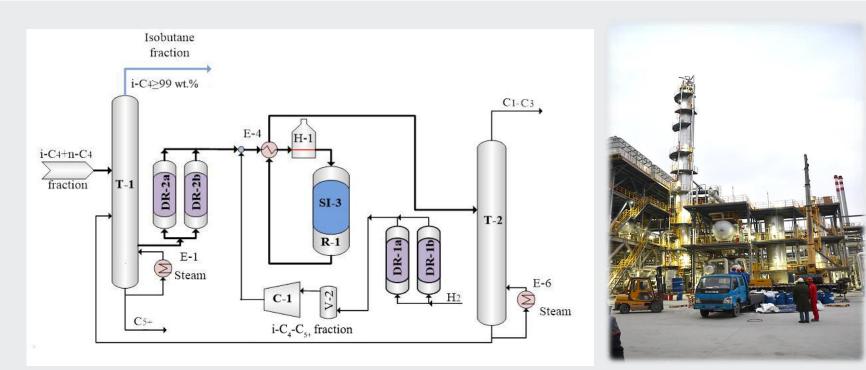
 "Once-through" isomerization process scheme with low-branched hexanes recycle

 Feed capacity, t/year
 15,200


 Isomerate yield, %
 ≥95

 RON
 ≥88

N-BUTANE ISOMERIZATION TECHNOLOGY ISOMALK-3



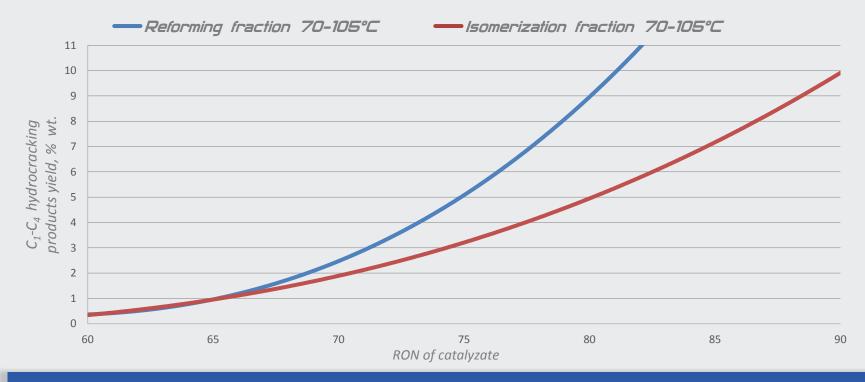
Typical n-butane isomerization unit Isomalk-3 consists of the following sections:

- **Isomerization feed treatment and drying section** is designed to remove moisture from isomerization feed; this operation is performed to protect catalyst against water, which suppresses catalyst activity;
- **Isomerization reactor section** is designed to perform isomerization reactions from normal butane to isobutane at the active sites of the catalyst at the most favorable conditions for the main reaction;
- **Hydrogen gas drying adsorbers section** is designed to remove moisture from hydrogen gas and from nitrogen during catalyst regeneration;
- Stabilizer section is designed to remove C_1 - C_3 hydrocarbons and dissolved hydrogen from obtained product.

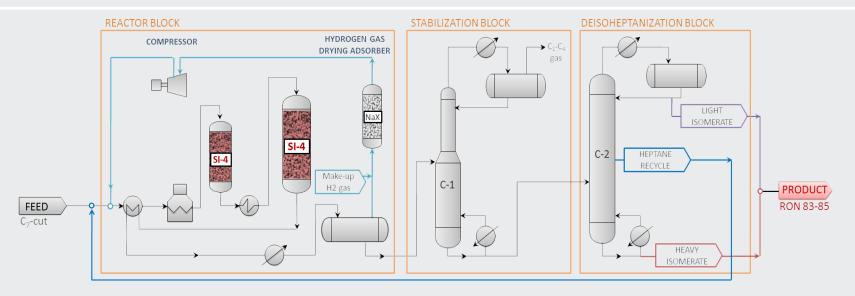
SHANGDONG SINCIER PETROCHEMICAL CO., LTD, CHINA NEW ISOMERIZATION UNIT ISOMALK-3

16

OPERATING PERFORMANCES OF THE UNIT:


Isomerization process scheme with feed deisobutanization and n-butane recycle	
Feed capacity, t/year	200,000
C ₃ -C ₅ yield per n-C ₄ , %	<i>≥99</i>
H ₂ /HC molar ratio, mol/mol	0.06-0.1:1
Space velocity in reactor section, h ⁻¹	8-9

Parameter	Value
Temperature, °C	160-210
Pressure, MPag	1.5-2.0
Feed supply space velocity, hour ¹	6.0-8.0
H ₂ : butane molar ratio	0.07-0.10
"Once-through" n-butane conversion, % wt.	50-55
"Once-through" yield of C_3 + hydrocarbons, % wt.	99
"Once-through" yield of C_4 + hydrocarbons, % wt.	94-95
Total service life of the catalyst, years	no less than 8
Catalyst service cycle, years	no less than 3


ADVANTAGES OF ISOMALK-4 TECHNOLOGY AGAINST REFORMING:

- ✓ Higher yield;
- No aromatic hydrocarbons in catalyzate;
- Decrease of expenses for MTBE and alkylate purchasing.

BASIC PROCESS FLOW-DIAGRAM OF ISOMALK-4 UNIT

CONDITIONS TO INCLUDE C7-FRACTION ISOMERIZATION UNIT TO THE GASOLINES PROCESSING SCHEME:

- Lack of alkylate and other high-octane non-aromatic motor gasoline components at refinery;
- Necessity to increase production of motor gasolines at the expense of higher selectivity of C₇-fraction processing.

CATALYTIC REFORMING OF GASOLINE FRACTIONS

There is no alternative to Platforming for obtaining high-octane motor gasoline component from heavy gasoline fraction 105-180°C yet. However, ever increasing ecological limitations of commercial motor gasolines compositions submit new even more severe requirements to the process:

For fixed-bed catalytic reforming units the challenge is issued to transfer to the catalysts being able to have service cycle of 3-4 years in severe mode (96-98 RON). In this case the reformate yield has to be equal to 88% and more.

For continuous catalytic reforming (CCR) unit the general requirements to catalysts are as follows: high selectivity together with high mechanical strength.

REFORMING CATALYSTS OF PJSC SIE NEFTEHIM

Reforming catalyst RC-12 for CCR units

High mechanical strength;High activity

New brand of reforming catalyst for fixed-bed units -REF-125

 Notably higher stability and selectivity in comparison with these of previous REF-23 series catalyst

CONCLUSION


- The environmental requirements to motor gasolines are continued to be more severe in all countries;
- It is possible to meet the ecological requirements only in case of expansion of the processes, designed to produce high-octane non-aromatic motor gasoline components;
- General emphases are laid on the high-efficient isomerization technologies of C_5-C_6 fractions, n-butane, and C_7 -fraction;
- Russian refinery became one of the leaders in the sphere of construction of new isomerization units;
- Catalytic reforming remains one of the requested processes for production of motor gasolines and aromatic hydrocarbons, at this new more severe requirements are imposed;
- Researches for creation of new more efficient catalysts are conducted all over the world.

CONTACT INFORMATION OF PJSC SIE NEFTEHIM

THANK YOU FOR ATTENTION!

www.nefthim.com

Address: 350007, Russia, Krasnodar region, Krasnodar, 4 Zakharova St. Tel.: +7 (861) 267-80-31 Fax: +7 (861) 267-80-40 E-mail: info@nefthim.ru