PJSC SIE NEFTEHIM

NEW ISOMERIZATION PROJECTS UNDER PJSC SIE NEFTEHIM TECHNOLOGIES

<u>Alexander Shakun</u>

General Director

2

$\mathsf{C}_{\mathsf{S}}\text{-}\mathsf{C}_{\mathsf{S}}$ isomerization units commissioning trend in Russia

E

SHARE OF DIFFERENT TECHNOLOGIES OF C_5-C_6 ISOMERATE PRODUCTION IN RUSSIA

Overall isomerate production throughput ~ 9100 KTA

SPECIAL FEATURES OF DIFFERENT $\rm C_{\rm S}{\rm -}C_{\rm G}$ ISOMERIZATION TECHNOLOGIES

Technologies over zeolite catalysts	Technologies over chlorinated catalysts (UOP, Axens)	Technology over sulfated catalyst SI-2 (Isomalk-2, PJSC SIE Neftehim)
× Process temperature	✓ Process temperature	✓ Process temperature
250-280 °C, thermodynamically unfavorable for the process	130-160 °C	130-160 °C
✗ Isomerate once-through octane number 77-78	 Isomerate once-through octane number 82-84 	 Isomerate once-through octane number 82-84
 High rectification costs in recycle operation 	 Requirement of constant chlorine supply and HC gas treatment 	 High stability and reliability of the catalyst 10 year run without regeneration has been achieved
	 High sensitivity to sulfur, nitrogen, and water traces 	 Possibility to produce 92-93 RON isomerate

NEW ISOMALK-2 UNITS START-UP IN 2015

JSC Orsknefteorgsintez

- ✓ Feed capacity 300 KTA;
- \checkmark n-C₅ and low-branched C₆ recycle;
- Isocomponent yield 98.5-99.0 wt. %;
- ✓ Isomerate octane number 91.5-92.5;
- Guaranteed service life of the catalyst –
 10 years;
- ✓ Guaranteed service cycle 5 years.

JSC RYAZAN OIL REFINING COMPANY

- Unit feed capacity 800 KTA;
 - Feed Deisopentanizer and low-branched C₆ recycle;
- Isocomponent yield 98.5-99.0 wt. %;
- Isomerate octane number 89.5-90.0;
 - Isopentane cut octane number 90.0-93.0;
 - **Guaranteed service life of the catalyst 10 years;**
 - Guaranteed service cycle 5 years.

ISOMALK-2 ISOMERIZATION UNIT JSC ORSKNEFTEORGSINTEZ

Main Process Flow Diagram

ISOMALK-2 UNIT OPERATING PERFORMANCES JSC ORSKNEFTEORGSINTEZ

Unit start-up	February 2015
Capacity, KTA	300
LHSV, h-1	2.0
Isocomponent octane number	91-92
Isocomponent yield, wt.%	97-98

Unit operating performances since start-up in 2015

E P

ISOMALK-2 ISOMERIZATION UNIT JSC RYAZAN OIL REFINING COMPANY

Main Process Flow Diagram

EPC

ISOMALK-2 UNIT OPERATING PERFORMANCES JSC RYAZAN OIL REFINING COMPANY

Unit start-up	May, 2015
Capacity, KTA	800
LHSV, h-1	2.5
Isocomponent octane number	89-90
Isocomponent yield, wt.%	98-99

E P

Test run results

MAIN DIRECTIONS OF FURTHER ISOMERIZATION PROCESS DEVELOPMENT

✓ Increase of C_6 – hydrocarbons share in pentane-hexane cut up to 70-75%

✓ Increase of C_5 - C_6 cut octane number up to 92-93

✓ Improvement of operation reliability. Increase of the unit run without catalyst regeneration up to 10 years

✓ Conversion of C_7 -cut (70-105 °C) from reforming to isomerization

EPC

70-105 $^\circ\text{C}$ CUT ISOMERIZATION VS. REFORMING

15th Russia & CIS Refining Technology Conference & Exhibition – RRTC 2015

E

and isomerate octane number

REFINERY CONDITIONS INDICATING THE NECESSITY OF INTRODUCING C7 CUT ISOMERIZATION

Lack of high-octane non-aromatic autocomponents for production of EURO-4, EURO-5 and eventually EURO-6 motor gasoline

Reforming units' overload with feed and high content of benzene precursors in the feed

High content of C₇ hydrocarbons in pentane-hexane isomerization feed

SIGNIFICANCE OF NEW N-BUTANE ISOMERIZATION UNITS' CONSTRUCTION

With the increase of oil refining depth, isobutane demand for alkylation processes will constantly extend

N-butane isomerization technology over chlorinated catalysts is widely used in the world refinery, however, it has a number of well-known disadvantages

PJSC SIE Neftehim created an alternative n-butane isomerization technology – Isomalk-3, which is designed to provide stable production of isobutane

PROCESS FLOW DIAGRAM OF N-BUTANE ISOMERIZATION TECHNOLOGY ISOMALK-3

Typical Isomalk-3 n-butane isomerization unit consists of the following sections:

- isomerization feed treatment and drying section is designed for water removal from isomerization feed; this procedure is intended for catalyst protection from water, which inhibits catalyst activity;
- isomerization reactor section is designed for proceeding isomerization reactions of normal butane into isobutane over active catalyst sites at the most favorable conditions for the main reaction;
- hydrogen gas dryers section is designed for water removal from hydrogen gas, as well as from nitrogen during catalyst regeneration;
- **stabilizer section** is designed for recovery of C₁-C₃ hydrocarbons and dissolved hydrogen from the obtained product.

MAIN PROCESS PARAMETERS OF ISOMALK-3 TECHNOLOGY

Parameter	Values
Temperature, ºC	160-210
Pressure, MPag	1.5-2.0
LHSV, hour ⁻¹	6.0-8.0
H ₂ :butane molar ratio	0.07-0.10
"Once-through" n-butane conversion, %	50-55
"Once-through" C ₃₊ -hydrocarbons yield, wt. %	99
"Once-through" C ₄₊ -hydrocarbons yield, wt. %	94-95
Total catalyst service life, years	8
Service cycle, years	3

CONCLUSION

Russian technologies for isocomponent production are as good as the best world analogues

✓ At the Russian refineries the problem of gasoline production according to EURO-5 standard was resolved. However, for production increase and commercial product cost reduction it is necessary to further increase production of high-octane non-aromatic autocomponents

In connection with the trend for further reduction of aromatic components proportion in motor gasoline to 24% there is a need for construction of 70-150 °C cut isomerization and n-butane isomerization units

THANK YOU FOR ATTENTION!

www.nefthim.com

Address : 4, Zakharov Street, Krasnodar,

350007, Krasnodar Region, Russia

Tel.: +7 (861) 267-80-42

Fax: +7 (861) 267-80-40

e-mail: kat@nefthim.ru

